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Application of nonparametric density estimators generally requires the 
specification of a "smoothing parameter." The kernel estimator, for example, 
is not fully defined until a window width, or scaling, for the kernels has been 
chosen. Many "data-driven" techniques have been suggested for the practical 
choice of smoothing parameter. Of these, the most widely studied is the 
method of cross-validation. Our own simulations, as well as those of many 
other investigators, indicate that cross-validated smoothing can be an ex- 
tremely effective practical solution. However, many of the most basic prop- 
erties of cross-validated estimators are unknown. Indeed, recent results show 
that cross-validated estimators can fail even to be consistent for seemingly 
well-behaved problems. In this paper we will review the application of cross- 
validation to the smoothing problem, and establish L1 con'sistency for certain 
cross-validated kernels and histograms. 

1. The smoothing problem. Application of the histogram estimator of a density to 
a collection of observations requires first the specification of a "bin width". Consistent and 
efficient estimation is achieved by allowing the bin width to shrink appropriately to zero 
as the number of observations increases to infinity. But a knowledge of the unknown target 
density is necessary to fully specify an optimal rate of shrinkage. Very little is known about 
the proper choice of bin width when faced with a fixed and finite sample from a distribution 
with unknown density. An analogous situation prevails for virtually all estimators of 
infinite dimensional target parameters; application of the estimator to a real set of 
observations requires the specification of a (usually one-dimensional) "smoothing param- 
eter", and very little is known about how this is most effectively and practically done. 

Given a random sample XI, x2, x, &om a distribution with unknown density f ,  the 
time honored Rosenblatt-Parzen kernel estimator is 

where K is a fixed probability density (typically the zero-mean Gaussian), and l / X  is the 
"window width"-the smoothing parameter for this estimator. Much is known about the 
relation between the rate of convergence of fx,, to f ,  and the asymptotic growth of the 
parameter X as a function of sample size ( A  = A,). But for fixed n, fx,, is sensitive to A, and 
there is no generally agreed upon method for choosing this critical parameter. I t  has been 
repeatedly observed that all of the commonly studied nonparametric density estimators 
suffer this same limitation: the generally well-understood relation between the asymptotics 
of the smoothing parameter and the convergence of the estimator do not provide a 
practical guide for the implementation of the estimator to real data. Regarding kernel 
estimators, Silverman (1978) observes that "there seems to be considerable need for 
objective methods of determining the window width appropriate to a given sample." 
Speaking more generally, Wahba (1981) remarks: "A major problem in density estimation 
is to choose the smoothing parameter($, which are part of every density estimate. . . ." 
Thus the maximum penalized likelihood estimator (Good and Gaskins, 1972) requires that 
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a weight be assigned the penalty term; orthogonal series estimators must be suitably 
truncated (Kronmal and Tarter, 1968), or "band limited" (Wahba, 1981); and sieve 
estimators (Geman and Hwang, 1982, Grenander, 1981) must be assigned a sieve size. And 
the problem is not peculiar to density estimation. Splines, kernels, and the newer "recursive 
partitions" (see, for example, Gordon and Olshen, 1980) for nonparametric regression, and 
sieves (Grenander, 1981) as a general approach to estimating parameters in abstract spaces, 
all require first a version of smoothing to be fully defined. Indeed, the problem seems to be 
inherent in the nowBayesian approach to infinite dimensional estimation. 

It  is natural to try to use the observations themselves to determine an appropriate 
degree of smoothing, and this general approach is known as "data-driven smoothing". Of 
the many forms of data-driven smoothing that have been proposed in the literature, 
probably the most versatile and widely studied is the method of cross-validation. We will 
review here the method of cross-validation, focusing particularly on its application to 
nonparametric density estimation. Then we will present results establishing the strong 
(almost sure) L1 consistency of certain cross-validated kernels and histograms. 

2. Data-driven smoothing by cross-validation. The general idea behind data- 
driven smoothing is to measure, as a function of the smoothing parameter, the ability of 
the estimator to "explain", or to "fit" the observed data. The smoothing parameter, 
denoted here by X, is then chosen to maximize this measure of explanation. When 
smoothing by cross-validation, in particular, the measure of explanation is obtained by 
deleting single observations, computing the estimator from the remaining observations, 
and then applying the estimator to the deleted observation. The details are most easily 
illustrated with specific examples. For this purpose, let us return to the kernel estimator, 
A,,, defined in (1.1).We will denote by f ;,,-I the estimator computed after deleting the i th 
observation, i.e. 

Now fi ,n-l  is not dependent on xi, and fi,n-l(x,) may be taken as a measure of the 
appropriateness of X as a value for the smoothing parameter: If fi,n-l(xi) is large, then it 
might be said that fi,,-l "anticipated" the observation xi, and that X is an appropriate 
degree of smoothing (at least for samples of size n - 1); small values of fi,,-l(xi) suggest 
that the observation xi was unlikely (under the density fi,,-l), and may be interpreted as 
evidence against the appropriateness of A .  As i ranges through the full sample we obtain 
n such measures of fit, and these may be combined into the likelihood-like expression 

One version of cross-validated density estimation, first proposed by Habbema et al. (1977) 
and separately by Duin (1976), chooses h to maximize LA (call this value A*, the "cross- 
validated smoothing parameter"), and then forms the corresponding estimator, f i e , ,  (the 
"cross-validated kernel estimator"). 

If, instead of the kernel estimator, A,, is defined by a histogram with bin width l/X, i.e. 

where X A  denotes the indicator function of the set A, then exactly the same procedure 
defines a cross-validated smoothing parameter, and a resulting cross-validated estimator. 
f~, ,  could in fact be any density estimator in which X represents the degree of smoothing 
(possibly, h is vector-valued); in each example, the same cross-validation method provides 
a natural and completely data-defined value for A. 

In Section 3 we will provide a more formal justification for the smoothing criterion LA. 
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And, in Section 4 we will state conditions under which, for kernels and histograms, 

Cross-validation, and more generally data-driven smoothing, has analogous applications 
to other estimation problems. Applications to ridge and nonparametric regression (see 
Craven and Wahba, 1979; Egerton and Laycock, 1981; Golub et al., 1979; Lawless, 1981; 
Utreras, 1979; Wahba and Wold, 1975), are probably the most widely studied and best 
understood. For these problems, as well as the density estimation problem, numerous 
simulations have repeatedly demonstrated good performance of estimators smoothed by 
cross-validation and closely related techniques. Some examples are in Duin (1976), Golub 
et al. (1979), Scott and Factor (1981), Utreras (1979), Wahba (1977), and Wahba and Wold 
(1975). However, support for the technique is qualified; many authors have expressed 
reservations based on various heuristic and analytic grounds, and some unsuccessful 
simulations (see Dawid, 1974; Egerton and Laycock, 1981; Hall, 1982; Lawless, 1981; and 
Stone, 1977). There is surprisingly little known analytically about the behavior of these 
estimators. For example, with the modest exception of the results presented in our Section 
4, there is not a single instance in which even the consistency of a cross-validated estimator 
has been established for an infinite dimensional target parameter. (In fact, as discussed 
below, consistency is not guaranteed.) (If one places a priori bounds on the allowed range 
of the smoothing parameter A, then consistency results are available. But for these 
estimators the range itself plays the role of smoothing parameter, and it cannot be said 
that they are fully data-defined.) There are interesting and important analytic results, 
mostly by Wahba and coauthors (see, for example, Craven and Wahba, 1979; Golub et al. 
1979; and Wahba, 1977), which suggest that certain cross-validated estimators will perform 
well, but the fundamental properties of consistency, efficiency, and asymptotic distribution 
remain to be established. 

There appears to be a real practical need for a better analytic understanding of 
estimators smoothed by data-driven techniques. Success or failure of these estimators can 
hinge on a subtle relation between the estimator being smoothed and the particular 
(unknown) target parameter. For example, it can be demonstrated that the cross-validated 
histogram is not consistent for any density in which the difference between the last two 
order statistics diverges (call this difference A,). The reason is this: If xi = max(xl, x2, . . . 
x,), then fhi,,-l(xi) (and hence LA)is 0 whenever l / A  <A,.  Consequently, the cross-validated 
bin width, l/A*, is no smaller than A,, and must therefore diverge. 

The same argument demonstrates the inconsistency of cross-validated kernel estimators, 
when the kernel has compact support and when the target density has the property A, + 
w (because then the cross-validated window width also diverges). Schuster and Gregory 
(1981) have derived precise tail conditions on the target density under which compact 
kernel density estimators are not consistent. The circumstances can be surprisingly 
innocent: as they point out, the tail of the exponential density is "too heavy" for consistent 
cross-validated kernel estimation, when using compact kernels. (Schuster and Gregory 
suggest replacing the ordinary kernel estimator (1.1)by the Breiman et al. (1977) variable- 
width kernel. In their simulations, a cross-validated version of the latter nicely estimated 
the Cauchy density, whereas the cross-validated ordinary kernel estimator drastically 
oversmoothed, even when employing a kernel with infinite support.) I t  is a corollary, of 
sorts, that cross-validated kernel estimators employing kernels with "light tails" will 
oversmooth densities with heavy tails. And, although we have no proof, our analysis 
suggests an obverse: kernels with heavy tails will undersmooth densities with light tails 
(such as densities with compact support). We believe the latter because in these situations 
we have been unable to effectively upper bound the rate of growth of A*; it appears that 
the window width, l/A*, may converge very rapidly to 0. Hall's (1982) recent paper suggests 
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a similar conclusion: cross-validation tends to undersmooth when restricted to finite 
intervals on which the target density is smooth and bounded away from zero. 

3. Some heuristics in favor of smoothing with cross-validation. We will prove 
that certain cross-validated histograms and kernels are consistent. Our proof is long and 
technical, and our approach is, in a sense, by "brute force". One might describe the plan of 
the proof, very loosely, as follows: (1)Show that the cross-validated smoothing parameter 
diverges to co;(2) establish an upper bound on the rate of divergence; and (3) demonstrate 
that consistent estimation obtains from any sequence of smoothing parameters (whether 
random or deterministic) respecting (1)and (2). What the proof does not tell us is why, in 
the intuitive sense, cross-validation is a reasonable mechanism for selecting smoothing 
parameters. Before formally stating our consistency results, we will take some time here to 
briefly argue, in a heuristic manner, for LA (defined in (2.1)) as an appropriate data-defined 
criterion for selecting smoothing parameters. (There is an entirely analogous argument for 
cross-validated regression estimators, with LA replaced by least squares criterion.) Similar 
motivation has been offered before, by Stone (1974) and by Wong (1979). 

Our heuristics are based on the following two observations: Let f(x) be a probability 
density function satisfying 1 J f(x)log f(x) dxJ < co (integrals without limits are taken over 
the whole real line). Then 

(i)J f(x)log g(x) dx < J f(x)log f(x) dx whenever g+ not equivalent to f ,  and 
(ii) the Kullback-Leibler information, J f(x)log( f(x)/g(x)) dx, is a meaningful measure of 
how well a density g approximates f .  In fact, if { fn}Z1 is any sequence of density functions 
for which J f(x)log{ f(x)/f,(x)) dx + 0, then J I f(x) - f,(x) I dx + 0 as well. (i) is an easy 
consequence of Jensen's inequality (see proof of Theorem I), and (ii) is proved in Geman 
(1981). Now, we might reason that 

by a Law of Large Numbers. Let us denote the cross-validated A, given n observations, by 
A*,, and let y, be any deterministic sequence such that fyn,, is consistent in the sense 
that 

Recall that X: maximizes LA, and use this in (3.1): since L, 5 LA:, we expect (at least 
approximately) 

by (i). But then 

Equation (3.2), together with (ii), would then lead us to conclude not only that f~*~,, ,  is 
consistent, but also that A',,, will compare favorably with f,,,, for any deterministic 
sequence 7,. 

4. Two consistency results. (a) Kernel estimators. Given probability density func- 
tions f and K, and xl, xz, . . . a random (iid) sample from a distribution with density f ,  we 
define: 

1.fx,,(x) = ( l ln )  CT=l hK(A(x - xi)), the kernel estimator o f f  with window size l/A, X 
r 0; 
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2. f i ,n-l(~)= ( l / ( n- I ) )C,+' XK(X(x- x,)), the kernel estimator based on the random 
sample excluding the ith observation; 

3. LA= II?=l fk,,- xi), a suitability measure for A; 
4. for a fixed number 0 < a < 1, a family o f  cross-validated smoothing parameters A, 

= {A:L, 2 a sup,=,,L,), which is a function of  xl ,xz, . . . , x,. (Extra restrictions on K would 
be needed to insure that LA attains its supremum. Choosing a < 1 rather than a = 1 both 
generalizes the statement o f  the theorem and avoids unnecessary assumptions about K.) 
I f  we assume: 
Al .  f is bounded and has compact support, 
A2. K is bounded, has compact support, and ( i )  K is nondecreasing on (--a,0]  (ii)K is 
nonincreasing on [0, co) (iii) for some 6 > 0, min(K(-S), K(6))  > 0, 

' 

then the cross-validated kernel is consistent: 

THEOREM1. For each n 2 2, A, is almost surely nonempty, and 

1. Functions of  X I ,  xz, . . . such as 

may not be measurable. In the statements and proofs o f  our theorems, probabilities o f  
events associated with such functions will always be 0 or 1. W e  interpret these in terms of  
the completed probability measure. 

2. Michael Perlman suggested the following generalization: Even i f  f does not have 
compact support, for suitable transformations g :  (-co, co) + (0, 1) the distribution of  g (x l ) ,  
~ ( x z ) ,  is. . . will satisfy the conditions of  the theorem. (Suppose, for example, that f 
bounded and has tails o ( l / x 2 ) .  I f  g - l (x)  = - c o t ( ~ x ) ,then g(x1) has bounded density with 
compact support.) Apply Theorem 1 to the transformed data, and then transform back: 

where A, and A,, are constructed from the transformed observations g (x l ) ,  g (xZ) ,  . . . 
3. Let A, + co be a deterministic sequence satisfying A, = o(n/loglogn). By techniques 

similar to those used in proving the theorem, it can be shown that, for a.e, x(dx) ,  fh,,,(x) 
+ f (x)  as., and that $ I fxn,,(x) - f (x) I dx + 0 as .  (cf .  Devroye and Wagner, 1979). An 
analogous statement is true for the histogram estimator (see Theorem 2 below) as well. 
The  details will be presented in a forthcoming article by Chow. 

(b )Histograms. Again let f be a probability density function, and let X I ,  xz, . . . be a 
random sample from a distribution with density f. For each h r 0, each j = 0, &1, k2 ,  
. . . , and each n = 2,3, . . . , define: 

the histogram estimator o f f  on the interval 

['-',i),2. f^,n(x)= f/,h,n for x E the histogram estimator o f f  ; 
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h 
3. fi,X,n-1 =-I k + i  Xn - 1  

4. f;,,-l(x) = f ; . ~ . ~ - lfor , the histogram estimator based on the random 

sample excluding the i th obseriation. 
&, the family o f  cross-validated smoothing parameters, is defined exactly as it was for 

the kernel estimator. Then, the cross-validated histogram is consistent for bounded 
densities with compact support: 

THEOREM2. I f f  is bounded and has compact support, then for each n r 2, A, is 
almost surely nonempty, and 

W e  will include here only the proof for Theorem 1. The  proof for Theorem 2 follows 
along similar lines. See Chow et al. (1981) for details. 

5. Proofs. 

PROOFOF THEOREM1. Let us assume, for the time being, the following lemmas: 

LEMMA 1.1. For each n r 2, A, is almost surely nonempty. Furthermore ( i )  P(infAEAnh 
+ m) = 1, and (ii) there exists k > 0 such that P{supAEAnA > (knllog n )  Lo.) = 0. 

LEMMA 1.2. Let I?(x) = X ~ ~ , , , ( X ) ,X,,(x) =-
1 

C7=1XR(A(X- xi)) ,  and 
n 

Define no = 0, and nk = [ek] ,k = 1, 2, ... ( [x]  is the greatest integer less than or equal to 

x.) I fh,  r 0 is any (deterministic) sequence satisfying ( i )  A, +m, (ii) A, constant on (nk-I,  

nk] k = 1, 2, . . . , and (iii) A, = o(n/log log n ) ,  

then 


LEMMA 1.3. Define I?, f~ , , ,  and as in Lemma 1.2. Then, with A, defined as in the 
theorem (using K, not I?), 

LEMMA 1.4. +et R ( x ) -  CY-l a i ~ [ ~ , , b , ] ( x )for some al, . . . a, and a1 < bl, . . . a, < b,. 
Use 8 to define fx,, and f h  (see Lemma 1.2). Then, with A, defined as in the theorem 
(using K, not I?),  

Lemma 1.1 asserts that A, is (as.)  nonempty. Define f ~ ( x )  = $ f ( y )hK(A(x- y ) )  dy. 
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Then 

~ U P A E A ,  I fA,n (x) - f (x) I dxI 
5 ~ U P A E A ,II fA,n (x) - fx (x) I dx + SUPAEA, I I fx (x) - f (x) I d ~ .  

Since f~ + f i n  LI as X + m (see Stein, 1970, theorem 2, page 62), Lemma 1.1implies that 
the latter term above goes to 0, almost surely. It is enough, then, to show that 

(5.1) ~ U ~ A E A ,II f ~ , n(x) - fx (x) I dx + 0 as .  

Since the continuous functfons are dens: in L1, so are the functions of the form I? 
defined in Lemma 1.4. Fix E > 0 and choose K, of the form defined in Lemma 1.4, such that 
11 K - I? l l ~ ,< E .  Then 

and Lemma 1.4 asserts that the last term goes to 0, as., as n + m. For the first term: 

Similarly (replace n-' X by $) Ilfx(x) - h ( x ) l  d x c e ,  

which proves (5.1). (The approach is similar to the one used by Bertrand-Retali (1978): 
realize K as a limit of approximating step functions.) So it is enough to prove the lemmas. 

PROOFOF LEMMA1.1. For each n r 2, the points xl,  . . . x, are as .  distinct. Since K 
has compact support, LA = 0 for all X sufficiently large, provided XI, . . . xn are distinct. On 
the other hand, for h > 0 sufficiently small, LA > 0, and it follows that A, is as.  nonempty. 

PART (i). The proof of (i) is based on the following four lemmas: 

LEMMA1.;. For any X1 > XO > 0 

log LA --
1

C? log fx (x,) I -,0 a.s. n 

LEMMA1.b. For any X I  > ho > 0 


C; log f~(x,) -If (x)logfx (x) dx + 0 a.s. 


( finite or infinite). 
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LEMMA1.d. $ f(x)log f~ ( x )  dx  is a continuous function of X on (0, m). 

For now, let us postpone the proofs o f  these lemmas. Assuming that they are true, we 
will show that for any X I  > 0 

P(1im infn,,infAEAnh r X I )  = 1. 

Now fix Al > 0, and observe that it is enough to show that there exists X z  > X I  such that 

(5.2) lim inf,,, - L A )> O as .{TLA, S U P O ~ X ~ X ~  

Because, i f  (5.2) is true, then for a.e. w, when n is large enough: 

y E [0,X I ]  *L y5 S U P O ~ A ~ A ~ L A7 S U P A ~ O L A ,< LA, 5 

i.e. y E [0,X I ]  - y A,, and hence infhEnn X r A1. (w is a sample point in the probability 
space underlying the observations X I ,  x2 ,.. ..) For (5.2), in turn, it is sufficient that (almost 
surely): 

1 1 1 
(5.3) lim sup,,, S U P o r h s h ,  - log LA < liminf,,, - log TL*, = lim inf,,, - logL ~ ~ .  n n n 

Let F be the distribution function of  f ,  and let S be the support o f  the associated 
probability measure (assumed compact, see A.l) .  For any X >0, i n f Z E ~ f * ( x )  > 0 (a stronger 
statement is demonstrated in the proof o f  Lemma La), and consequently 

If (x)logf~ (4dx > -a, 

where fl(x) is fA(x) at X = 1. Therefore, there exists X o  sufficiently small, such that 0 < X O  
< X I  and 

1 1
lim -n log LA = lim sup,,, -n C g l  log fi,,-l(xi) S U P O ~ ~ ~ ~ ~  

Since f(x)log f ( x )  > - l /e ,  $ f(x)log f ( x )  dx  > -a whenever f has compact support. I f  
$ f(x)log f ( x )  dx  < +co as well, then by Jensen's inequality, for any A > 0 

(The  support of f* is strictly larger than the support o f f ,  hence the strict inequalities.) 
Since f ~ ( x )  5 hK(O),$ f(x)log f*(x) d x  < m. Therefore, whether or not $ f(x)log f ( x )  d x  < 
m, 

for every X > 0. 
Because of  (5.5), and Lemmas 1.c and l.d, we can find X p  > X I  such that 

and 
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with XO as in (5.4). Then, using (5.4) and Lemmas 1.a and l.b, 

1 
lim sup,,, suposxrx, - log LA < If(x)log fh,(x) dx = lim inf,,, - log LA, as., 

n n 

and 

1 
lim sup,,, SU~A,,A,A, n f(x)log fh,(x) dx = lim inf,,, - log LA, as., 

n 

and (5.3) follows. 
What remains (for part (i) of Lemma 1.1)are the proofs of Lemmas l.a, l.b, l.c, and 1.d. 

For brevity these are deleted, but are available in Chow et al. (1981). 

PART(ii). There are results on spacings of random variables, such as those by Devroye 
(1981), that can be adapted to the proof of ii. But for the present application it is no more 
work to prove the result directly. Let yl 5 yz . . . 5 yn be the order statistics of XI, . . . x,. 
Recalling that K has compact support, choose s >0 such that I x I 2 s *K(x) = 0. Observe 
that if 

for some i = 2, ... n - 1, then 

Hence LA = 0 for all 

Since LA > 0 for all h sufficiently small, X E A, * 

Let an be a sequence of positive numbers. Since f(x) is bounded, we can choose 6 > 0 
such that I F(x) - F(y) I 5 S I x -y I for all x and y. Then 

Let us call this latter event A,. We want to show that for a, = kn/log n, k sufficiently 
large, P(A, Lo.) = 0. 

It is well known that {F( y,) - F(y,-,)) i = 2, 3, ..,n have the same joint distribution 
as (Ul/S,, U2/Sn, .. . U,-l/Sn), where S, = Uk, and Uo, .. . U, are iid unit mean 
exponential random variables. Hence 

Observe that 

{ma~,,~,,-~rnin(Ui-~/S,,Ui/S,) 5 sS/cu, i.o., and S,/n + 1) 

* { m a ~ ~ ~ , , , - ~ , ~ ~ ~ ~ ~ m i n (Ui-I, U,)S 2nsS/a, i.0.) 
Since Sn/n + 1as., 
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But 

If a, = knllog n, then 

which is summable for k sufficiently large. Hence, by the Borel-Cantelli lemma, P(A, i.0.) 
= 0 for k sufficiently large. 

PROOFOF LEMMA1.2. (There is a large literature on the law of the iterated logarithm, 
some of which is devoted to "triangular arrays" of random variables. But we have been 
unable to find results sufficient for our present purposes. The most closely related work 
appears to be in a recent paper by Hall (1981),but the results there are not sufficient for 
Lemma 1.2.) 

Suppose we can show that, for a.e, x, 

(5.6) X,,n(x) -h,(X)+ 0 as .  

Then, als?, for a.e., w ,  fAn,,(x)- + 0 a.s. (dx ) .Again by the theorem in Stein (1_970, 
page 62),fA, ( x )+ f ( x )  for a.e. x. Using this, (5.6),and Fatou's lemma with A, = { x :  f ~ , ( x )  
2 fh,,n(x)) 

lim II f ~ , ,( x )- flh,(x) I d x  

= 2 - 2 lim inf,,, I X A ~ ( X ) { J ~ ~ ( X )[f7hn(x)- - f7hn,n(x))]d x  

2 - 2  If ( x ) d x = O  as .  

It is enough, therefore, to show (5.6). 
Fix an x for whichf7hn ( x )+ f ( x ) .For each X and i define Zi(X)= XI?(X(x- x i ) )-A ( x ) ,  

and for each h and n define S,(h) = C;=l Zi (h) .  
In this notation, (5.6)is written as (l/n)S,(X,) + 0 a.s. 
Fix E > 0. We will show that 

The other inequality, n- '&(An) < - E,  is handled in the same way. 
For k 2 2, nk -1  > nk/9. Hence 
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So, it is enough t o  show that, for every E > 0, 

P { ~ ~ x ~ ~ - , < ~ = ~ ~ S , ( A , )> n k ~  =i.0.) 0. 

Observe that  E {Z;(A,))  = 0, 

and (Z i (A , )  1 5 2A,. W h e n  A, < E/2, then we have, already, &(A,) < ne/2  < nke for n k  2 

n. So we can assume, without loss o f  generality, that  A, 2 E/2 for each n. Now consider 
&(t)3 ~ [ e ~ ( ~ ' ( ~ " ) - ~ ) ] .Following a familiar argument (see, for example, Chernoff,  1952), 
we can find to > 0 (which depends on  n and E )  such that 4,(t0) 5 1 - S/A, for some 
sufficiently small S > 0 (which depends on  E ,  but not on  n) .  

Because A, is constant on  (nk-I,nk],S,(A,) is a martingale on  ( n k - l ,  n k ]  for each k .  
Apply the  martingale inequality 

~ { r n a x ~ ~ - , < ~ ~ ~ ~ ~ , ( ~ , )> nkE) 5 e - t n h e ~{etSnk('nJ> = {+nh(t)Inh 

for every t 2 0. In particular, 

P{maxnh_,<n=nkSn(An)> nke) 5 5 (1  -{4~n,(to))"~ 8/Ank)nr. 

Thus  Lemma 1.2 can be proved b y  demonstrating that ak = ( 1  -S/A,h)nk is a summable 
sequence, and then  applying the  Borel-Cantelli lemma. But  

and the latter is summable since Ank/nk = o( l / log  k ) .  

PROOFOF LEMMA1.3. According t o  Lemma 1.1, we can find a sequence {A,) satisfying 
the conditions for Lemma 1.2, and such that  

Fix such a sequence {A,). Lemma 1.3 is proved b y  comparing 

T h e  latter goes t o  zero, as was established in  Lemma 1.2. 
Define, for each n and each A E A,, N,( A) = i n f {n :nAr A,). 
Because o f  (5.7), and because A, + m, 

A n  easy consequence is that 

SUPAEA~II - Anx[o,~](Anx)1 0N ~ ( A ) A X [ O . I ] ( N ~ ( A ) A X )  d x  + as., 

and from this 
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Notice that for any integer N > 0 and any X > 0 

1 ( ( J;;))Xxro,ll(Xx)= Egl NX~ro,il NX x -- a,.. (dx ) .  

Using this in the definitions of L, ,  and we can rewrite 

1 
=;f+ ,n (x )  ~ g lfNA,n 

and 

I , ( -2)a .
X ( x )  = - E N  J (dx ) .  

Now apply (5.8): 

I 1 j - 1 
u p 1 L,n(x )-L ( x )I dx 5 SUPAE*~-E,%~") ( I fNa(*)hh.(X

Nn(X) 

PROOFOF LEMMA1.4. Observe that 

Use this to rewrite /A,,, and f?h in terms of A,, and A, defined in Lemma 1.2, 

f ? h , n ( ~ )= ai)f;~/(b,-a,)),n(XEZl tYi(bi - -

and 

L ( X )= EZ1 ai(bi - ai) J ( A / ( ~ , - ~ , ) )( X  - ai/X). 

Hence 

where hn,i= { A :  (bi - ai)X E A,). For each i, h,,i has the same properties established in 
Lemma 1.1 for A,. Since the proof of Lemma 1.3 made use of these properties only, 



CROSS-VALIDATED DENSITY ESTIMATION 

Lemma 1.3 applies with A, replaced by A,,i: 

for each i. 
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